Irreducible pseudo 2-factor isomorphic cubic bipartite graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducible pseudo 2-factor isomorphic cubic bipartite graphs

A bipartite graph is pseudo 2–factor isomorphic if all its 2–factors have the same parity of number of circuits. In a previous paper we have proved that pseudo 2–factor isomorphic k–regular bipartite graphs exist only for k ≤ 3, and partially characterized them. In particular we proved that the only essentially 4–edge-connected pseudo 2–factor isomorphic cubic bipartite graph of girth 4 is K3,3...

متن کامل

Pseudo 2-factor isomorphic regular bipartite graphs

A graph is pseudo 2–factor isomorphic if the numbers of circuits of length congruent to zero modulo four in each of its 2–factors, have the same parity. We prove that there exist no pseudo 2–factor isomorphic

متن کامل

Pseudo and strongly pseudo 2-factor isomorphic regular graphs and digraphs

A graph G is pseudo 2–factor isomorphic if the parity of the number of cycles in a 2–factor is the same for all 2–factors ofG. In [3] we proved that pseudo 2–factor isomorphic k–regular bipartite graphs exist only for k ≤ 3. In this paper we generalize this result for regular graphs which are not necessarily bipartite. We also introduce strongly pseudo 2–factor isomorphic graphs and we prove th...

متن کامل

Making Bipartite Graphs DM-irreducible

The Dulmage–Mendelsohn decomposition (or the DM-decomposition) gives a unique partition of the vertex set of a bipartite graph reflecting the structure of all the maximum matchings therein. A bipartite graph is said to be DM-irreducible if its DM-decomposition consists of a single component. For connected bipartite graphs, this is equivalent to the condition that every edge is contained in some...

متن کامل

Regular bipartite graphs with all 2-factors isomorphic

The Heawood graph and K3,3 have the property that all of their 2–factors are hamiltonian cycles. We call such graphs 2–factor hamiltonian. More generally, we say that a connected k–regular bipartite graph G belongs to the class BU(k) if for each pair of 2-factors, F1,F2 in G, F1 and F2 are isomorphic. We prove that if G ∈ BU(k) , then either G is a circuit or k = 3.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs, Codes and Cryptography

سال: 2011

ISSN: 0925-1022,1573-7586

DOI: 10.1007/s10623-011-9522-0